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THREE-DIMENSIONAL THERMOELASTIC PROBLEMS OF PLANES 

OF DISCONTINUITIES OR CRACKS jm SOLIDS1 

by 
2 3 

M. K. Kassir and 6. C. Sin 

Abstract 

Presented in this paper is a general formulation of the three- 

dimensional thermoelastic equations (uncoupled) for problems involving 

crack-like imperfections or planes of discontinuities of some kind in 

solids. Harmonic functions are constructed from which the stresses and 

displacements may be obtained. The thermoelastic potential for symmetric 

distribution of temperatures on the crack surfaces is related to Boussi- 

nesq's three-dimensional logarithmic potential for a disk in the shape of 

the crack. The mass density of the disk is found to be proportional to 

the prescribed temperature gradient normal to the crack plane. As an 

application of the theory, closed form solutions, in terms of complete 

and incomplete elliptic integrals of the first and second kind are given 

for a flat elliptical crack whose surfaces are exposed to uniform temper- 

atures and/or temperature gradients. The possibility of extending the 

Griffith-Irwin theory of fracture to cracks in thermal environments is 

also discussed. 

The results presented in this paper were obtained in the course of re- 
search carried out under Contract Nonr 610(06) with the Office of Naval 
Research, United States Navy. This paper will be published in the Pro- 
ceedings of the Third Southeastern Conference on Theoretical and Applied 
Mechanics. 
2 
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Notation 

a, b 

f, g, h 

k, k' 

kj(j=l,2,3) 

q(x,y) 

q ,m..p.,q. 
V 3 y3    3 

(j=l,2,3) 

r 

s, t 

u, v, w 

VVwo 
x, y, z 

A, B, C 

E(k), K(k) 

F, G, H 

I 

Q(s) 

Qo 

R. R0 

T(x,y,z) 

To 

Z 

a 

ß 

5» n» ; 

x(s) 

Semi-axes of elliptical crack. 

Harmonie functions of x, y, z. 

Arguments of complete elliptic inteqrals, 
k2 + k'2 = 1. 

Stress-intensity factors. 

Density distribution. 

Constants. 

Distance normal to crack border. 

Dummy variables. 

Rectangular components of displacement. 

Displacements on crack surface. 

Rectangular coordinates. 

Multiplying constants 

Complete elliptic integrals of sacond and 
first kind associated with k, respectively. 

Potential functions of x, y, z. 

Integral. 

Function of s. 

Uniform temperature gradient. 

Length. 

Temperature distribution. 

Constant temperature. 

x2  v2 

Coefficient of thermal expansion. 

Angle subtended by r and x-axis. 

Ellipsoidal coordinates. 

Arbitrary function. 
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u Shear modulus. 

v Poisson's ratio. 

p Ratio of r to a. 

oxx,oyy,o22 Normal components of stress. 

T ,TU_,T_¥ Shear components of stress. 

4> Angle in parametric equation of ellipse. 

4 Vector potential. 

41 Thermoelastic potentials. 

4>*,^** Scalar potentials. 

A, n Functions in skew-symmetrical problems. 

Introduction 

While the solution of problems of thermal stress for thin plates and 

long cylinders has received considerable attention in the past4, compara- 

tively little work has been done on the problems of three-dimensional 

theory of thermoelasticity for solids containing imperfections. It is 

known that when a temperature field is disturbed by the presence of cracks 

or flaws, there is high elevation of the local temperature gradient accom- 

panied by thermal stress. Thermal disturbances of this kind in some 

cases cause crack propagation resulting in serious damage of structural 

members. Hence, solutions to thermoelastic problems of cracks have imme- 

diate practical value in fracture mechanics. 

The existing literature on the three-dimensional aspects of thermal 

stress around cracks has been limited to a few publications. Moreover, 

4 
An extensive reference of papers on thermoelasticity may be found in 
[1,2]. 
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previous works are confined to axially symmetric problems dealinq with the 

"penny-shaped" crack. Such a restriction is mainly due to the mathematical 

difficulties of this class of problems. By the method of dual integral 

equations in the Hankel transforms, Olesiak and Sneddon [3] investigated 

the distribution of thermal stress in the neighborhood of a penny-shaped 

crack in an infinite medium. The prescribed temperatures on the upper 

surface of the crack are identical with those on the lower surface. Using 

the condition of symmetry with respect to the crack plane, they reduced 

the problem to one of mixed boundary conditions on the surface of a semi- 

infinite solid. The same problem was also treated by Deutsch [4]. The 

case when the thermal conditions are applied skew-symmetrically to the crack 

surfaces was considered by Florence and Goodier [5]. The present paper 

deals with a class of thermoelastic problems with cracks of more general 

shapes which include the circular cracks in [3-5] as special cases. It 

should be pointed out that the effects of both inertia and coupling between 

temperature and strain fields are neglected in the aforementioned works. 

An effective way of solving three-dimensional boundary-value problems 

is to construct the general solution in terms of certain arbitrary func- 

tions dictated, in part, by the appropriate field equations and, in part, 

by the topology of the region of interest. These arbitrary functions are 

then determined such that the boundary conditions of the problem are ful- 

filled. This is precisely the approach adopted in the work to follow. 

With the aid of harmonic functions, a general solution of Navier's equa- 

tion including thermal effects is obtained. By restricting the analysis 

to problems with cracks, stress and displacement expressions are derived 

for two types of problems, one of which concerns with stress systems 

which are symmetrical about the crack plane and the other with skew- 
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symmetrical systems. In the former case, the steady-state temperature field 

for an arbitrary region of exposure (or region of the crack) may be deter- 

mined from the Newtonian potential for a disk in the form of the crack plane. 

For the purpose of Illustration, detailed solutions in ellipsoidal coordi- 

nates are obtained for the problem of heat applied to the surfaces of an 

"elliptically-shaped" crack. 

Since the practical aspect of this paper is to establish a criterion 

of fracture for cracks in thermally stressed bodies, an examination of 

the stress field in the vicinity of the crack border is pertinent. The 

local stresses are found to have the same functional relationship and 

inverse square-root singularity as those obtained in isothermal elastic 

bodies subjected to surface tractions [6]. The significance of this result 

is that the Griffith-Irwin theory of fracture [7], oriqinally developed for 

bodies maintained at constant temperatures, may now be extended to predict 

the onset of rapid crack propagation caused by thermal changes. More 

specifically, stress-intensity factors kj(j=l,2,3), which govern the sta- 

bility behavior of cracks, are computed and shown in curves for the cases 

of thermal conditions applied symmetrically and skew-symmetrically to the 

faces of an elliptical crack. 

Fundamental Equations of Thermoelasticity 

When the influences of both coupling and inertia are disregarded, the 

general thermal-stress problem separates into two distinct problems to be 

solved consecutively. The first is a problem in the theory of steady- 

state heat conduction which requires the temperatures T(x,y,z) at ewery 

point of the body to satisfy the Laplace equation in three-dimensions: 

v2T(x,y,z) = 0 . (1) 
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Once the temperature distribution has been found, the resulting displace- 

ments and stresses may be obtained, respectively, from the Navier's dis- 

placement equation of static equilibrium 

1       2  „,1+v . ,. to) jZ%; VV.u + V u = 2(^2^)aVT. W 

and the Duhamel-Neumann stress-displacement relation 

a  = y|vu + UV + J^J [vV.u - (l+v)aT] I ]. (3) 

in which u is the displacement vector, o is the stress tensor and I is the 

isotropic tensor. The gradient and Laplacian operators are denoted by v 
2 

and v , while u, v, and <* designate the shear modulus, Poisson's ratio, 

and the coefficient of linear expansion of the solid whose mechanical and 

thermal properties are assumed to be isotropic and homogeneous. 

If x,y,z stand for the Cartesian coordinates, the solution of eq. (2) 

for three-dimensional problems with geometric discontinuities on the plane 

z = 0 takes the form 

U  -  <j>  +  ZVip*   ,   1^*  =  i{/** +  \\). (4) 

where 

A - 0, vV - 0, f - ^)0T. (5) 

and the vector displacement potential <f> has components <j>x, $y, and <{>z. 

In eq. (4), f** is the scalar displacement potential and ^ the thermo- 

elastic potential. Hence, the dilatation becomes 

V.U   =   V.<j>  +  -g|     • (6) 
i 

and the condition of equilibrium, eq. (2), requires that f 
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*.♦ + |z C (3-4v)*** - * ] = 0. (7) 

For T(x,y,z) = 0, the above expressions reduce to those given in [6]. 

Using eqs. (3), (4) and (6), the components of the stress tensor a, 

in terns of <j> and <(>*, may be obtained: 

£ - t? 'V**' + VZ (»•♦ #J -2fe> |f +* & (8a) 

p    3X V9Z  '  3z      3X3Z V  ; 

lyj. = i_ (A +**)+ i*y_ + 2z 2J£ . (8c) 
y    3y V9Z v ; ■jr-  " 3y3z l  ' 

For the purpose of discussing symmetry conditions in the section to follow, 

the other stress components oxx, oyV, TXV are not of immediate interest. 

Thermoelastic Problems with Planes of Discontinuities 

In order to avoid unnecessary complication in the analysis, the surfaces 

of the plane of discontinuity or crack at z = 0* are taken to be free from 

applied normal and shear stresses, since the method of solution when there 

are such applied stresses has already been treated in [6,8]. Moreover, the 

complete stress solution can be split UD into two parts, which may be con- 

sidered independently. The first part deals with the application of surface 

temperatures that are the same on both sides of the crack and the second 

considers the case where the temperatures on the upper surface, z = 0 , of 

the crack are equal and opposite to those on the lower surface, z = 0 . 

The corresponding stress systems will be referred to as the symmetrical part 

and skew-symmetrical part, respectively. 

In the symmetrical part of the problem, the stresses and displacements, 

induced by thermal changes, will depend upon the variable z as follows: 
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even in z 

odd in z 

These functions are required to be continuous outside the crack region on 

the plane z = 0 and the odd ones shown in eq. (9b) must be zero on such a 

plane. Furthermore, if the crack surfaces are fr~e from applied stress, 

then a = 0. In view of symmetry, the condition , = , = 0 must hold zz xz yz 
everywhere on the plane z = 0. Hence, eqs. (8b) and (8c) give 

__ a (~ +·'·*) + ~ = 0 0 ax '~'z '~' az ' z == • 

l_ (cp +~*) + ~ = 0, z = 0. ay z az 

At this point, it is convenient to introduce a harmonic funct4on f(x,y,z) 

such that both eqs. (7) and (10) are satisfied, i.e., by letting 

af oo a 
cpx = (l-2v) ax+ J * dz 

z 

af 00 1J. 
cp = (l·-2v) ay + J ay dz . 
y z 

af af 
cpz = -2(1-v) az ' w** = az . 

where 

2 v f(x,y,z) = 0 . 

The limits of the integrals in eqs. (lla) and (llb) have been chosen to 

satisfy the condition of regularity of the displacement at infinity. It 

follows that the displacements and stresses in the solid may be expressed 

in terms of two real harmonic functions f(x,y,z) and ~(x,y,z). They are 
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.   V 

u=n-2v)f+r||d2 + zf   . (12a) 

»■"-fc>$♦£$*♦*£ • <12b) 

w - -2(l-v) If + z If-   . (12c) 

and 

!xx . A + 2v A + j" A dz . 2 |t + z A •                                    (13a) 

#=6+2vä+/;§d-2if+z6 •          "3b> 

Ist = (i-2v) i!t. + r" i!sL dz + z I!L_ (13d) 
2y        3x3y  z 3X3y     3x3y . 

I*L=zi!t- . (13e) 
2p     3X3Z 

in which 

C 3f X , F ="3T+ * • 

Similarly, the skew-symmetrical part of the problem may be formulated 

by having 

u, v, oxx, Oyy, ozz       ; odd in z (14a) 

w, TXZ, T ; even in z (14b) 

to be continuous across the plane z = 0 with the exception of the crack 
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region. The odd quantities in eq. (14a) must again vanish on the plane of 

continuity. On the crack surfaces, T  = T  = 0. Note that in the case 

of skew-symmetry ozz = 0 on the entire plane of z = 0, i.e., 

3 

3Z 

f 
i 

r 
i 

(*z+***)  +    v    [i^X + i*y_|=    f*     . (15) 
T-v I 3x        3y I      3Z 

Eliminating the function i> by means of eqs. (7) and (15) yields 

J-IÜx + ÜKltziT-o. (16) 

Now, let g(x,y,z) and h(x,y,z) be two harmonic functions related to <i>x and 

*y by 

*x = -2(l-v) H   , *y = -2(l-v) |£   . (17) 

where 

9 2 v*g(x,y,z) = 0 , v h(x,y,z) = 0 . 

It follows that 

$** = 11 + ill . (18) 
v        3x     3y v    ' 

and 

♦z ■ * - (1-Zv) ***    . (19) 

In a straightforward manner, the displacements are found as 

u = -2(l-v)ff+z|£ • (20a) 

I 

v = -2(l-v) H+ z |f • (20b)   J 

w = -2(l-v)||f+f)+G + z|| . (20C)   ♦' 
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and the stresses are 

!** = 2(l-v) |^-- 2|^+ zil .                                                          (21a) 
2y           x       '   3y3Z           3Z           3x* 

^flU 2(l-v)^L- 2Ü+z^ .                                                                      (21b) Zy           v     v/   3X3Z           3Z           3y? v       ' 

%"§ ■ <21c> 

Txz ^ n x3 /i£ ah.  3G   32G ,.* 
2V" {1"v) W (w ~ a^ ^ z ^F • (21e) 

i£ = (i-v) |_ (f - |SL) + |i + z |!i. . (zif) 
2y     ' 3x v3x  3y'  3y   ayaz 

where 

G'f + f+* • (22) 

The above formulation places no restriction on the geometry of the 

planes of discontinuities. However, for the sake of definiteness, the sub- 

sequent work will be concerned with a plane crack in the shape of an ellipse. 

Temperature Distribution in an Infinite Solid 

Consider the problem of an infinite solid the interior of which is ex- 

posed to uniform temperatures over a region occupied by the ellipse 

i7+b?=1 • z = 0 • 

Hence, it is expedient to solve this problem in ellipsoidal coordinates 

Utn.d. which are related to the rectangular coordinates (x,y,z) of any 
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point by [9] 

a2(a2-b2)x2 = (a2H) (a2+n) (a2+e) •                      (23a) 

b2(b2-a2)y2 = (b2n) (b2+n) (b2H) .                       (23b) 

a2b2z2 = cnc • (23c) 

where 

2  . . . .2 00 > € > 0 > n > -b * s $. -a  . 

In the plane z = 0, the inside of the ellipse is given by 5 = 0, and the out- 

side by n = 0. 

Let the temperature distribution T(x,y,z) in the solid to be an even 

function of z vanishing at infinity. The boundary conditions of interest 

are 

T ■ -T0 ,  5 ■ 0 . (24a) 

|i = 0  ,  n = 0 . (24b) 

where T is a constant. The solution of this problem is well known since 
0 

the temperature T(x,y,z) is equivalent to the velocity potential of a per- 

fect fluid passing through an elliptic aperture of a rigid partition5. 

Thus, it can easily be shown that 

T(x,y,z) - - jgjj /"  * - -T0 fa   . (25) 

5See, for example, [9], p. 150, eg. (1) 
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Here, K(k) is the complete elliptical integral of the first kind with 

argument k2 = 1 - (b/a)2 and 

Q(s) = s(a2+s) (b2+s) . 

The variable u is associated with the Jacobian elliptic functions snu, 

cnu, —, and should not be confused with the x-component of the displace- 

ment vector u. The relationship between u and the ellipsoidal coordinate 

5 is 

c = a
2 (f^)2 = a2 (sifVl) . sn u     x 

From eq. (25), the temperature gradient may be computed: 

3T = Jo   [nc(a2+g) (b2+g)]1/2 (26) 

On the plane z = 0, eqs. (25) and (26) provide the correct boundary con- 

ditions as 

T =< 

•T0 » K = 0 

3T 
3Z 

bl^kl 
(1 x2 _ £.-1/2 = 0 

=   < 

Ulo K7kT • * " ° .   0    , n ■ 0 . 

Substituting eq. (25) into the third expression in eq. (5) gives 

3£       /i+v\ aaTp    r     ds (27) 

The explicit expression of i|>(x,y,z) is not required for this part of the 

problem. Terms containing the derivatives of ij>(x,y,z), such as those in 

eqs. (12) and (13), will be found subsequently. 
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If the elliptical region of exposure is maintained at a uniform tem- 

perature gradient Q0, then the temperature T(x,y,z) is an odd function of 

z. The boundary conditions are 

||- ■ -Qo . € = 0 • (28a) 

T = 0   , n = 0 . (28b) 

Aside from a multiplying constant, T(x,y,z) is identical with the velocity 

potential for axial flow past an elliptic disk in an infinite fluid6. From 

this hydrodynamical analogy, it is found that 

_,   .  ab2Q0   ,°°  ds    Qo rsnudnu cf  xn ,on* T(x,y,z) = 2T^t ' z / iTPTiT = ETkT h^Tu- 'l^^  -z •      ^ 

where 
u 

E(u) = / dnzt dt . 
o 

and E(k) is the complete elliptical integral of the second kind. Using eqs. 

(28) and (5), the thermoelastic potential can be determined from the con- 

ditions 

§a_(T±,|^,, = 0. 

U- 0 , n = 0 . 
3Z 

which can be written in the equivalent form 

6See [9], p. 144, eq. (8). 
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* « H(x,y) , { = 0 . 

||=0, ,-0. 

The function H(x,y) may be considered to be any particular solution of the 

equation 

32H + 32H c /1+vx oQo 
ax?    jy?    W   2     ' 

^^OI^/JÄ^^-llsT- ^ 

Furthermore, if H(x,y) is sufficiently smooth, a suitable solution for the 

thermoelastic potential may be taken in the form of the Newtonian potential 

of a simple layer with a continuously differentiate density.   Without going 

into details, it can be verified that putting 

2 2? 

into aT = 2(j^) || results in eq. (29). 

Having obtained the thermoelastic potentials given by eqs. (27) and 

(30), a more detailed treatment of the thermoelastic problem is in order. 

The Elliptical Crack Problem 

Let the surfaces of a flat elliptical crack in an infinite solid be 

opened by the application of uniform temperature T0 and temperature gra- 

dient Q0 as described in the previous section. In the absence of mechanical 

and thermal disturbances at sufficiently large distances away from the 

crack, the displacements and stresses are assumed to vanish as z approaches 

infinity. From the knowledge of iKx,y,z) or its derivative with respect 

to z, the complete solution of the present problem requires the evaluation 

of one function f(x,y,z) for the symmetric part and two functions g(x,y,z) 

and h(x,y,z) for the skew-symmetric part. 
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Suppose that the prescribed temperature are constant across the upper 

surface of the elliptical crack and are exactly the same as those across 

the lower surface given by eqs. (24). In addition, the corresponding 

mechanical conditions are 

ozz = 0, 5 = 0 ; w = 0, n = 0 . 

Thus, eqs. (12c) and (13c) give 

|| = 0, c = 0 . (31a) 

j£- 0, n * 0 . (31b) 

An appropriate form of the function f(x,y,z) is [6] 

f(x,y,z) = 1/2 A /" (-£- + -£- + £ -1) JL_ . (32) 
5 an-s  b^+s  s    vtftsT 

which satisfies eq. (31a) and the constant A is obtained from eq. (31b) 

given by 

* ■ <£> • mfr  • <33> 

To find the displacements u and v, it is necessary to evaluate 

A   _    l+v       aotTp 
= (7-) • 3X3Z  V1V * 8K(k) ' h2(a2+0«*JR7  ' 

obtained from eq. (27). Here, 

Upon integration with respect to the variable z yields I 

H _    /l+v\      aaTn     r x dz /3*x 

3x       Vv    ' 8K(k) J
z hZ(a2+04K?T   ' 
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where the variable of integration may be changed from z to s by the re- 

lation [9] 

Introducing s as a dummy variable of integration, eq. (34) becomes 

M. = (1+V) ac*Tp   r°°    s ds  

3x " " 1-v *4K(k) ' 1  (a2+s) z(s)*^TiT 

where z(s) is determined from 

2 2 2 
x     +   4— + —-1 = 0    .                                                                             (35) 

a2+s       b2+s     s 

Integrating eq. (34) once more gives 

/" Ix d2 = "(V^ " 4lfe *x f C f J(s;x'y) ds ] dz ' {36) 

in which 

n .   x2   .  y2 rV2 

J(s,x,y) 3/2      —17^     • 
(az+s)       (bH-s) 

Since integrals of the form 

CO        00 

/ dz / A(S) ds . (37) 
z  e 

may be evaluated from the formula 

00 00 

-/ dz / A(S) ds = / [z - z(s)] A(S) ds . (38) 
z   K K 
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eq. (36) takes the form 

/" fdz ■ <&> • Sffe ••fvy ■ (39a) 

where 

-V2 
(a^+s) -- (b<+s) "- [ 1 -^ 

C 

1/2 , , ,-3/2 „9 .-1/2 

5 

'r(<^^"1,!t'-Ä-fe]     *• 

I2 = / s  (a2+s)   (bz+s)   ds . 

In a similar manner, it can be shown that 

l] fdz ■ <&> • JRHJ- »w3 -V • <39b> 
where 

,3. /• (A.,-'/« (As,"3'2 [ , - JL    £] 

I. - I   s1/2 (a2+s)-1/2 (tAsf3/2 ds . 
5 

Q 

The displacements in the plane z = 0 are found as 

2 . -1/2 , 
ds 

^The evalu . ion of eq. (39a) is intimately related to the elliptical punch 
problem which was solved only in part by Green and Sneddon [8]. Their solu- 
tion can be completed by following the steps going from eq. (27) to (39). 
Incidentally, a complete solution to the elliptical punch problem has been 
given by Gal in [11]. 

®See Appendix (1) for the results of integrals. 
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u ■     A [ M_2v)b2 f     „ ds .,,, i   + Üü. f"     JL 
sds, ,   .    ] 

=" aw -x ((i~2v) 62 [u"E(u)] + KCkf[E(u)"kl2u] I •      (40a) 

ifEr •*I<'-*» CEC) - (|)2" - *2 •*» 

+ |^[u-E(«) + k2.^SÜ]|. (40b) 

w « 2(l-v) A Lim [ z. /       ds , 1 
z-0 cS^ÜT 

= iÜzvlA L1m  [ z fsnujnu . E(u)] i m {4Qc) 

ab*       z^O en u ' 

Now, let uQ, vQ, and wQ be the displacements of the crack surfaces.    Then 

as £ ■*■ 0: 

sn u + 1, en u +0, dn u + j, E(u) -»• E(k)  . 

and eqs. (40) simply reduce to 

i«,   = - 2Ab^ £(k)  ,x   [ (1.2v) [Mill -1] + (i)2 IU<1 - 1 I   . (41a) 
ä3kZ""""        l x'    " LE(k)    'J     V   K(k) 

2Ab 
Vo=     a 

^E(k).y   ((l-2v, [{^.M||] + 1.|M]   . (41b) 

In the special case of a penny-shaped crack, a = b, E(k) = K(k) = TT/2, 

eqs. (41) may be further simplified as 
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pol . , U+j^ Jxj t Wo . 2(Hv)a,T0 ^ (42) 

2   2   2 where p = r/a and r = x + y . The normal component of the displacement 

w of the crack surface aqree with eq. (90) in [3] only when the integrals 

in [3] are evaluated properly9. As a consequence, the variation of w0 with 

p shown by Fig. 3 in 1.3] should also be changed accordingly. 

The problem of a uniform steady heat flow disturbed by an insulated 

elliptical crack is equivalent to the one of assigning uniform temperature 

gradients to the crack surfaces. The thermal conditions are shown in eqs. 

(28) and 

TXZ = Tyz = 0, £ = 0 ; u = v = 0, n = 0 . 

must be satisfied on the plane z = 0. From eqs. (20a), (20b), (21e), and 

(21f), these conditions may be put into the forms 

§+»Sx<$-#-$'<-°- (43b» 

9The corrected expressions in Olesiak and Sneddon's paper [3], p. 253, should 
read as 

/ j = 2(1+v)a90a (Sin n - n cos n) . (88) 
TT n^ 

with 

t 
«Ikr  i  .  ./T-f7 1        r = 26( /   s Q(s) ds = £2a [ 1 - Ä^XZ ] ,   C = iSfl. 

' ira iia 
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ano 

W(p) -!S*[ (l-p2)1/2 - log (1 + /TW ]    . Tra 

Hence, 

W0 = L0 (1-P2)1/2    . (90) 

where 

i    = 2(1+v)aeQa    # (91) 

and e0 corresponds to T0 in the present work. 

where the right hand side of eqs. (43) are known quantities from eq. (30), 

and 

||- 0 , |£- 0 , n = 0 . (44) 

Both g(x,y,z) and h(x,y,z) are even functions of z. The character of eqs. 

(43) suggests that the problem can be readily solved by putting10 

fMxfj-z^A , (45a) 

9Z~ = <y 9? "  ay) fi ' (45b) 

Equations (45a) and (45b) represent the velocity potential of a rigid el- 

liptical disk rotating about the y-axis and x-axis, respectively . 

'"If H(x,y,z) is a harmonic function, i.e., v2H(x,y,z) = 0, then (x r~ - 
z i_) H and (y JL - z i-_) H are also harmonic, 

ax      az   ay 
11 See [10], p. 145. 
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By virtue of eqs. (45), eqs. (20) render 

y-2(l-v)x|+z|jf[r + 2NA]    , (46a) 

v = -2(l-v) y || + z|^[ r + 2(l-v)o ]    , (46b) 

w =   2(l-v) * - (l-2v) r + z |£   . (46c) 
3Z 

Equations (21) may also be expressed in terms of the functions A(x,y,z) and 

n(x,y,z): 

^xx 3 9 3r 3 r j'o 
2T = 20"v) az (y 3y + D fi " 2 3z + z tax? - 2(l-v) ay?]    . (47a) 

230.- 2(l-v) i_(xi_+ 1) A - 2 IL + 2 [£r . 2(l-v) l?*]    . (47b) 
2p 3z       3x 3z 3y7 ^xZ 

if=zli? • (47c) 

?f ■-d-v) |F (x f + y ^ + i ^y [r + 0-V)(A«)]   • (47d) 

I*i =   (1-v) i_ (x M - y IS) + i_ (z s_+ 1) r 
2u 3y       3y        3x       3x       az 

93 
+ 0"v) äxäy? C /   Z(A~") dz ]    • (47e> 

#°   n-v)|7(yf.x|A)+|7(z|I+l)r 

(l-v) -|?y [ /°° z(A-n) dz ]   . (47f) 

where the following contractions has been made: 

3A    3fi    3fi  32    " 
r = 4' + A + x3X- + y3y + Z37 + -972-[J z(A-n) dz ] . 

From eqs. (30), (43), and (45) follow then 
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■ <T$ SÜH $} - n (^.x. t - o •     <48a> 
3 3 3 | 3 go 3A 3 I 
32 (y  3? " z  ay) a * v  117 <> 3x " x ly' " Ix^äy £ / 2<A-n> dz ^ I 

. (lij, Ij^t , . (t)2 K^f ] * . C - 0 .   (48b) 

Taking A(x,y,z) and n(x,y,z) in the forms 

[fl
1]"1/2[B]V^ + ^t^"1,^T • 

- 23 - 

(49) 

the constants B and C may be solved from eqs. (48), which yield 

B = m1q2 " m2q1 f  c = 
mlP2 : m2Pl (50j 

PlP2 " P2^1 '     91P2 " ^2Pl 

The constants p., q. and m. (j=l,2) are 
j  j    j 

P, • - £$■+ JZH [ E(k) - K(k) + v [(f)2 E(k) - K(k) 

qr     -^ [ E(k) - K(k) + ^by*Jbl 
2a2E'k»  ]      • 

and 

P? •  g&   [ W) - (F>2 E<*> ^ (a2+ba^V 2a2E'k) 3    • 

MJf ■ 



q2 ■ ^ * ^7 ( k(k) - (i) E(k) + v [ K(k) - E(k) 

+ (a
2+b2)K(k) - 2a2E(k) •, | 

a2 - b2      
J I • 

m. = (^).f^[i-(|)2§}] • 

The solution is essentially complete and is a complicated function of the 

material constants and the geometry of the problem. 

A straightforward calculation employing eqs. (46) gives the displacement 

components'2 for z ■ 0 

Bx 

= -2(l-v) 

v 
V J 

a3k2w 

>  Lim . -i- I z [ 
' z->0  abz ' 

snu dnu 

en u 
- E(u) ] J (51a) 

•Cu-E(u)] |[(lij)5|^.(1.2v) 

[ 3B + (1 -2.) (B-C) ] ) x + £    \       . 

+ < Oft)  Jl^O- - d-2v) [ 3B + 2C + (^)2 (B-C) ]Uf)2 [ E(u) - k2 . 

snu cnu 
dn u u > -1 

/a2k2 [ (Hj) ab2^ . (1.2v) B ] + (1_2v) (B.C) X2J u 

+ (l-2v) (B-C) x2 sn u cn u dn u (51b) 

2The results of the integrals are tabulated in Appendix (2). 
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In the same way as before by setting £ = 0, the displacements of the crack 

surfaces are found: 

Bx 

. 4(1-v) 
ab ) "-S-£ 

1/2 

A 

In the limit as a = b, eqs. (50) shows that 

B s c - - (J*2L) . i^sQfl.  . 
I-V      OTT 

(52a) 

■ C K(k) - E(k) ] |[(1^)|^L- (l-2v) 

[ 3B ♦ (1 - jL) (B-C) ] ] X2+ £  J . 

+ I'($)  fjj^0- ~  (l-2v) [ 3B + 2C + (^)2 (B-C) ]J 

C (§) E(k) - K(k) ] .y2 

- (a2k2 [ Ofä)  flj^tt- (l-2v) B ] + (l-2v) (B-C) x2 I K(k)  .  (52b) 

Because of rotational symmetry of the circular crack problem, the displace- 
2  ?  1/2 ments u and v may be combined as (u£ + v^)  to give the radia"! compo- 

nent up: 

3/F' (l+v)a2a0o 
=il p ' ^ '  p * ] * (53) 
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13 
The normal displacement w0 is 

(fe).Äu-}[(l-)p!-|(N].P«l • (54a) 

and 

(^).Ä = I7([(^)P2-!(^)]sin-Ml) 

- (1-v) fiFT p > 1  . (54b) 

Eqs. (53) and (54) check with eqs. (26) and (27) in [5], respectively, when 

the expression for w0 in [5] is corrected. The temperature gradient Q0 

corresponds to T in [5]. 

The computation of thermal stresses will be considered in the next 

section. 

^For p > 1, w0 in Florence and Goodier's paper [5] should be corrected, 

^ (hvj wo 1 fil . F, (1,1;£;I-) 
Vv a2aQo   3 JTT p  2 1 v2 2 2 P2

; 

+ 2(l-2v)  1    F ,3 3.7.1 , , 
45 *ET  p3  * ' 2 2 2 p2 

where 2^i (a,b;c;z) is Gauss' hypergeometric series. Moreover, these hyper- 
geometric series can be reduced to elementary functions by means of Gauss' 
recursion formulas [9] and some properties of the hypergeometric series. 
The results are 

1 2F,  <U4*T> ■ 7 C ^ - (P2-2) sin"1  (1) ]    , 
P 2 2 2 p<!        4 p 

h • 2F1  (J^3?) = ~ [ (P2 - |) sin"1  (1) - ^T ]    . 
p3^'222p^4 3 p 

There is also a misprint in [5], eq. (27), where the factor TT/4 should read 
as 1/4. _ 26 - 



Crack-Border Thermal Stresses and Stress-Intensity Factors 

A knowledge of thermal stresses in a small region ahead of the crack is 

essential in the investigation of the stability behavior of cracks. For in- 

stance, the Griffith-Irwin theory of fracture [7] is based upon the concept 

that the onset of rapid crack extension occurs when the magnitude of crack- 

border stress field or simply the stress-intensity factor reaches some crit- 

ical value. For a given configuration of the crack, this value will in 

general, depend upon the properties of the material such as the shear modulus, 

Pöisson's ratio, and the coefficient of thermal expansion, etc. Hence, at- 

tention will be focused on the determination of stress-intensity factors 

kj(j=l,2,3), where each one of the k-factors refers to a particular mode of 

crack surface displacement. The elliptical crack problem will be used as an 

example. 

The "opening mode" of crack extension, governed by k], arises in the 

symmetrical problem. For the mere purpose of finding k-j, it suffices to cal- 

culate ozz in the plane z = 0, outside the elliptical crack region. By way 

of eqs. (32) and (13c)14 

fzz _ A |       2     *  (2s+a2+b2)ds  ) 

2u " l C1/2 (a2n)V2 (b2n)1/2 " ? (a2+s)(b2+s)v^IT ' 

ds + fl+v\  aotTp  r 
Vv ' 4K(k) \ MsJ 

snu cnu ,1+v. oTfl. / 1  _  ab2.       .„„ ™ 
= {J   2     ' E(k) C 5

1/2 (a2+U
1/2 (b2H)1/2 " (U>   dn u ] 

+ KMI   'n = 0   • (55) 

'4Refer to Appendix (1) for solutions to inteqrals. 
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In the neighborhood of the crack border, the ellipsoidal coordinates £ 

and z, have the limits'5 

-1/2 
S = 2 abr (a2 sin2* + b2 cos2<j>)     , (56a) 

c = - (a2 sin2* + b2 cos2*)  . (56b) 

which are valid for n = 0 and r « 1. The small distance r in the plane 

z = 0 is measured normal to the crack border and * is the angle in the 

parametric equations of an ellipse. Substituting eq. (56a) into (55), the 

expansion of czz for small values of r (or c) is 

°77 - (T^) ^ß(*2 si"2* + b* cos**) Jr + °<r ) •   <57> zz  l-v E(k)J a vZr 

The stress-intensity factor k-j can now be extracted from eq. (57) as 

k] = (j±ü) t^a/T(a2 sin2* + b2 cos2*)   , a > b  . (58) 

The variation of k^ with the angle * is plotted in Fig. 1 for v = 1/3 

and different values of the ratio a/b. A glance at the curves shows that 

k] is always greatest at * = 90°, i.e., the intersection of the crack 

boundary with the minor axis of the ellipse. Thus, crack propagation, if 

it occurs, would first take place at the point (0,b,0), and tend to produce 

a penny-shaped crack. This is a brief physical interpretation of the 

Griffith-Irwin concepts of fracture. 

15See [6], eqs. (52a) and (55). 
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The remaining strength of a solid whose continuity is interrupted by 

a circular crack may be estimated from eqs. (57) and (58) by setting a = b 

and s = r2 - a2. Consequently16 

2u = (^)^(P2-D 
■1/2 

-V    TT 
P > 1 

and (59) 

I     l-V     TT 

The stress-intensity factors ^ and l<3 correspond, respectively, to the 

"edge-sliding" and "tearing" modes of fracture. Their evaluation calls 

for the expressions TXZ and iyZ as z-»0. It is found from eqs. (47e), (47f) 

and (49) that17 

„ 0 1/2 

2M      L     a2-b2       J      (LS-v}4E(k) J j
c (a2

+s)^fIT 

- B [ 

2v(b2H) 

(2s+a2+b2)ds ds 
SHU"    K (a2+s)(b2+s)^TsT"   v J

e "(b2+s)^sT 
] 

-TO ,      w ö   or [ B (^J172 (1 - -4M - C (^ii)"" (1 - 4-) ] 
C/z (?-s)(b2-a2) b2+? a2n a2+c b2H 

.b!±iJ/2 

+ v (B - C) / s ds 
g (a2+s)(b2+s)dJTs7 

f n (60a) 

16The factor of a/3 should be taken out of eq. (92) in [3]. 

l7The integrals are tabulated in Appendix (2). 
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2y b2 - a2 l      Vl-v   4E(k) J
c (b2+s) 

-Cf   5?-| 
(2s+a2+b2)ds ♦ v/ ds 

mj      c (a2+s)(b2+s)^TiT        J5 (a2+s)^IT 

(b2+s)/5ny 

] 

v2^>,.,. [B (ü^)1/2 (i --4-) - c (^)1/2 (1 -4-) ] 
T77 (C-c)(a2-b2) L " V+c a2+c a2+e b2+? 

- v (B - C) / s ds 

(a2+s)(b2+s)^T 
= 0 (60b) 

where B and C are given by eq. (50).    Near the crack boundary, eqs. (56) may 

be applied to simplify eqs. (60): 

2u 
2 COS   4> 

ab ■ZT   ([ {Z^ B - C ] (TTT Sly      2 > >| b     \      b a^ sin^<j) + b^ cos^<f> 

1/4 
-B)    (a2 sin2d, + b2 cos2j,)       + Q {ry2) 

I fix 

hi 
2y 

- 2-^p [ [ &2 c - B ] (2 ! f «** 
ab     V a    \      a a^ sinZ<j> + b* cos2$' 

- C (a2 sin2(fr + b2 cos2<t>) 
v^r 

1/4 
+ 0 (r"c) 1/2, 

(61a) 

(61b) 

Before kj(j=2,3) can be found, the following transformations 

Tnz = Txz cos ^ + Tyz Sln ^ • (62a) 

Ttz = ' Txz sin ß + Tyz cos ß ' (62b) 

should be performed to obtain the normal and tangential components of the 

shear stress. In eqs. (62), ß is the angle between the x-axis and the line 
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normal to the crack border in the plane z = 0. It is not difficult to show 

that for a given value of <j», i.e., a fixed position on the crack boundary, 

8 is known either from 

, O •> 9    9 ,-VZ 

sin ß = a sin * (a^ sin'* + b^ cos'*^ 

or 

cos s = b cos * (a2 sin2* + b2 cos2*) 
■1/2 

Putting eqs. (61) into (62), T  and xt may be written as 

Tnz = |£ + 0 (r1/2) , Ttz = Ja + 0 (r1/2) . 

where 

k. 

k. = 

-1/4 
- ^ä= (a2 sin2* + b2 cos2*)   (B cos2* + C sin2*) .      (63a) 

4
HP~

V
) (a2 sin2^ + b2 cos2^)   (i B . k C) sin (j, cos * .  (63b) 

•ab b   a 

It is worthwhile to mention that in the skew-symmetrical problem of an 

elliptical crack, there exists a combination of "edge-sliding" and "tearing" 

movements of the crack surfaces as both k2 and k3 occur simultaneously. 

Hence, the shape to which the crack would grow will depend upon a function 

of k , k and is no longer a priori evident as in the case of the opening 

mode. For v = 1/3, the values of k2 and k3 against * are shown in curves 

by Figs. 2 and 3. Note that k2 varies with * in a manner similar to k-j 

as in Fig. 1. Inspection of rig. 3 reveals the interesting fact that the 

four points at which the crack border intersects the major and minor axes 

are under the action of "edge-sliding" type of displacement only, since k3 
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vanishes at those places. The maximum values of k3 shift as the ellipticity 

is changed. This is clearly illustrated in Fig. 3. 

In the degenerate case of decreasing ellipticity, i.e., as b~a, eqs. 

(63) reduce to 

3/2 
k = ( 1 +v) 2 }J aQo a 
2 rv 31T (64) 

and the 11 tearing 11 mode disappears completely. This result is in agreement 

with that obtained by Florence and Goodier [5] 18 . 

It should be emphasized that the angular distribution of the three-

dimensional thermal stresses near the_ crack border is found_tQ_be the same 

as those in an elastic body undergoing deformation at constant temperatures 

[6]. The two-dimensional case was discussed by Sih in [12]. In retrospect, 

this justifies the application of the Griffith-Irwin theory of fracture to 

cracks owing to thermal disturbances. 

18 
The sum of the nor~al stresses, (or+ o~) or (axx + oyy) in f5], on the 

plane of the penny-shaped crack 1s incorrect. lt can b~ seen from eqs. 
(47a), (47b) and (49) in the present paper that 

2 2 2 l/2 (ab) ( + ) = _ [ (l+v) a~(o.~o + (l+v) (B+C)] (1- ~a - :C.b•r) g-- oxx ayy 1-v 2~ k ~~ ~ w z=O 

2 2 2 2 -l/2 
+ ( l+v) ( B ~ + C 'i':...2) ( 1 - ~ - ~) , E; = 0 

a~ b ·a~ ~ 

and hence, for a = b, the above equation becomes 

- l [ ( 1 - v) 11 - p 2 + l ( 1 +v) l ] , p < 1 
'TT 3 11 - p2 

which is the revised form of eq. (28) in [5]. 
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Remarks on a Class of Boundary Problems 

A more general approach to the problem of finding the steady-state 

temperature field in ellipsoidal coordinates will be considered. Once the 

structure of T(x,y,z) is known, a number of thermoelastic problems of 

cracks may be solved by the method described earlier. For brevity sake, 

discussion will be restricted to the symmetrical problem where 

T(x,y,z) = T(x,y, - z) . 

The formulation for the skew-symmetrical temperature problem follows in the 

same way. 

Suppose that the surfaces of an elliptical crack is thermally disturbed 

with the following boundary conditions: 

T = T(x,y)  , c = 0  . (65a) 

fj= 0  , n = 0  . (65b) 

which reduces to eqs. (24) for T(x,y,0) = constant. A well-known solution 

of eq. (1) in potential theory is [13] 

T(x,y,z) =   / / q(x'>y') dx'dy' , (66) 
z 

where 

-1       ? ?       ?   A'1 

R = [ (x-xT + (y-y'r + z2 ] 

and q(x', y', 0) is the density of a distribution of mass in the space 

(x', y', z'). The integral in eq. (66) is extended over the region occupied 

by the ellipse x2/a2 + y2/b2 = 1. The requirement is that T(x,y,z) must be 

sufficiently regular at infinity. This is satisfied as 
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-1 
T + R0 SI q(x'»y') d*'dy'  •when R

0 + 00 

z 

where 

,   9 9 9,VZ 

Now, eq. (66) may be inserted into the last of eq. (5) and the result can be 

integrated to admit the representation 

*(x,y,z) = | (]±£) . k / / q(x',y') log (R + z) dx'dy' .       (67) 

Apart from the factor ü (l±ü), eq. (67) is Boussinesq's three-dimensional 
2 1-v 

logarithmic potential for a disk in the shape of z, whose mass density is 

q(x,y). While ip(x,y,z) has continuous derivatives vanishing at infinity, 

the function \j/(x,y,z) itself is unbounded as R ■*■ «> , since 

* -► [ log (R + z) ] . / / q(x,y) dxdy , when R -»■ • 
Z 

The boundary condition, eq. (65a), can be satisfied by taking 

T(X.y)-J-//    q(x'?y'l dx'dy t {68) 
2ir Z  [  (X-X')2 +  (y-y')2 ]V2 

Integral of this type is used in the contact problems of the theory of 

elasticity, in particular, the problem of a perfectly rigid elliptical 

punch on an elastic half-space [11]. 

In ellipsoidal coordinates, the temperature field may be taken as 

T(x,y,z) = f   ♦(«) =$=     . (69) 
C    'Q(s) 

where 
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and *((D) is any twice differentiate function in the interval (0,1) with 

finite one-sided derivatives at the boundary points of the interval. Note 

that eqs. (65) are satisfied by 

1/2 
Ü = . 2_ UnC)

1/2 f ,.<„> _^ . 2 ,(0) [ ^  (»^)(b^| ]   . (7oa) 
az   ab       c    S^Ul        ab U-n)U-c) 

and 

T(x,y) . j" # (1 - -|L - JgL) -J5- . (70b) 
ü     a?+s  b2+s /3(s) 

It should be pointed out that if *(u) is a polynomial of degree n in x 

and ys then T(x,y) will be another polynomial of the same degree in xz 

and y2. 

Alternatively, eq. (69) may also be used to satisfy the boundary 

conditions 

q(x,y)   , 5 = 0 . (71a) 

il- 
3Z 

, n ■ 0 . (71b) 

By taking q(x,y) to be a function of the variable 

z = i . *£- yl   . 
a2  b2 

then eq. (71a) gives 

♦(.) =. sk/" aUlJs (72) 

In particular, if 

q(Z) = q0 Z
n  . (73) 
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eq. (72) becomes 

, ,   abqp r (n+1)   r , . « + ]/2 

The temperature distribution may also be computed as 

T(x,y,z) = - ^ JLlntll. /" [ „(„ f + V2^ (74) 

For n = p - 1/2, where p is a positive integer, the integrand in eq. (74) 

can be expanded and the integration may be carried out term by term''. 

A few cases of eq. (74) are 

(a) n = - 1/2, eq. (74) reduces to eq. (25) with 

qo = bKOO ' 

(b) The integral corresponding to n = 0 has yet to be evaluated. 

(c) The temperature T(x,y,z) for n = 1/2 is 

19 In the special case of a = b, eq. (74) can be integrated for all values 
of n giving 

Tsi»la r(n+l) (k,)
2(nt1)

I       ... T /r r (n + |j (k '     J2(n + 1) • £ " ° • 

where 

K  dt 
2n " o (dn t)2n  * 
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T = - ^mi   | a2k2 . [ ! - mi ] X2 - [ (i)2 EM . i ] y2 I , e = 0 
2 az kz I K(k)       b  K{k)      I 

Conclusion 

Three-dimensional problems of cracks in thermoelasticity have been formu- 

lated. The displacements and stresses are expressed in terms of potential 

functions, which are valid for planes of discontinuities bounded by smooth 

curves. Of fundamental interest is the problem of a flat elliptical crack 

whose surfaces are thermally disturbed. Exact solutions are obtained and 

reduced to the limiting cases discussed by previous authors [3-5]. 

Several essential features of the stability behavior of an elliptical 

crack, heated on its surfaces, are discussed in connection with the Griffith- 

Irwin theory of fracture. The concept of stress-intensity factor is intro- 

duced. In general, all three types of k-factors are present in structural 

members undergoing thermal changes. Therefore, a criterion of fracture 

will have to depend on a function of k-j, k2> and k3 to reach some critical 

value, say f  at which unstable crack extension would start. The function 

fcr must be determined experimentally. 

APPENDIX 

(1) The folloving integrals are essential in the calculation of dis- 

placements and thermal stresses: 

/ -JL..1 u (75a) 

/ 
ds . 2 

5 (a2+s)^lsj a3k2 
[ u - E(u) ] , (75b) 

/ 
ds   .2 

r (b2+s)^(sT  a3k2  b 
[ (f) E(u) - u - 

9     9 
/a -bS sn u en u -i 

b2 dn u 
(75c) 
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f     J f ■ -jj [ E(u) -k'2y]     , (75d) 
$ (a'+s)/Q(s)     ak^ 

r"      s ds        _   2   r ,      r/„\ . 1,2 snucny T /7C-\ j,w^vm-TF[u'm*k —^r1 • (75e) 

f     ds     = _2_ [ (aW) E(U) . 2 u - (a2-b2) sn u cn u ] , 
C (a2+s)(b2+s)^[?y a5k4   b2 b2    dn u 

(75f) 

f --^r-%== = —^ [ (1 + K-)  E(u) -2^u-snucnu . 
5 (a2+s)2^(?y 3 a3k2     k2        k2 

. dn u ]  .  (75g) 

^ (a2+s)(b2+s)v^sT a3k2  a2-b2    |<2       dn u 

(2) For the skew-symmetrical part of the problem, it is necessary to 

find 

00 00 

/ z . A (x,y,z) dz ,  / z . n (x,y,z) dz 
z z 

where the functions A (x,y,z) and n (x,y,z) are themselves integrals given 

by eq. (49). Hence, integral of the type 

00 oo O 0 0 

2 J
z     L J

f V+s     b2+s     s ' *^sj I 4/   *U    (Tfc + I& + !i-l)   ^Tldz      . (76) 

is involved. Using formula given by eq. (38), eq. (76) becomes 

I..lj"(JjL + .*L + £-l)2 . UL     . (77) 
8 \   a2+s  b2+s  S       *^(ST 

From eq. (77) follows then 

ill - . 1 f°° (_x£_ + J^L + z£ _ i)       s ds _ x2 ,"      s ds 
9x2 z\ v

a2+s     b2+s     s (a2+s)^TsT \ (a2+s)2^[ij   ' 

(78a) 
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3                             9  3/2 

-L-L = . y /  s ds     + 2 xzy s     (78b) 
3x23y     g (a2+s)(b2+s)^IiT  U

2^)3/2(b2+C)1/2(c-n)(c-c) 

3/2 
iL-xf" LÜ§ + 2jc)^i   # (78c) 

3xay2     g (a2+s)(b2+s)^TJT  (a2+c)l/2(b2+C)
3'2(5-n)(e-c) 

Similar expressions for partial derivatives of I with respect to x,y,z 

may be obtained for the computation of stresses and displacements. It is 

now apparent that the solutions to the integrals in eqs. (78) can be ob- 

tained from eqs. (75). 
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Figure (1) - "Opening" mode of fracture 
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